Efficient Elastic Net Regularization for Sparse Linear Models
نویسندگان
چکیده
We extend previous work on efficiently training linear models by applying stochastic updates to non-zero features only, lazily bringing weights current as needed. To date, only the closed form updates for the l1, l∞, and the rarely used l2 norm have been described. We extend this work by showing the proper closed form updates for the popular l22 and elastic net regularized models. We show a dynamic programming algorithm to calculate the proper elastic net update with only one constant-time subproblem computation per update. Our algorithm handles both fixed and decreasing learning rates and we derive the result for both stochastic gradient descent (SGD) and forward backward splitting (FoBoS). We empirically validate the algorithm, showing that on a bag-of-words dataset with 260, 941 features and 88 nonzero features on average per example, our method trains a logistic regression classifier with elastic net regularization 612 times faster than an otherwise identical implementation with dense updates.
منابع مشابه
Regularized Linear Models in Stacked Generalization
Stacked generalization is a flexible method for multiple classifier combination; however, it tends to overfit unless the combiner function is sufficiently smooth. Previous studies attempt to avoid overfitting by using a linear function at the combiner level. This paper demonstrates experimentally that even with a linear combination function, regularization is necessary to reduce overfitting and...
متن کاملFIRST: Combining forward iterative selection and shrinkage in high dimensional sparse linear regression
We propose a new class of variable selection techniques for regression in high dimensional linear models based on a forward selection version of the LASSO, adaptive LASSO or elastic net, respectively to be called as forward iterative regression and shrinkage technique (FIRST), adaptive FIRST and elastic FIRST. These methods seem to work effectively for extremely sparse high dimensional linear m...
متن کاملA flexible Bayesian generalized linear model for dichotomous response data with an application to text categorization
Abstract: We present a class of sparse generalized linear models that include probit and logistic regression as special cases and offer some extra flexibility. We provide an EM algorithm for learning the parameters of these models from data. We apply our method in text classification and in simulated data and show that our method outperforms the logistic and probit models and also the elastic n...
متن کاملFeature Selection Guided by Structural Information
In generalized linear regression problems with an abundant number of features, lasso-type regularization which imposes an `-constraint on the regression coefficients has become a widely established technique. Crucial deficiencies of the lasso were unmasked when Zhou and Hastie (2005) introduced the elastic net. In this paper, we propose to extend the elastic net by admitting general nonnegative...
متن کاملVariable selection for varying coefficient models with the sparse regularization
Varying-coefficient models are useful tools for analyzing longitudinal data. They can effectively describe a relationship between predictors and responses repeatedly measured. We consider the problem of selecting variables in the varying-coefficient models via the adaptive elastic net regularization. Coefficients given as functions are expressed by basis expansions, and then parameters involved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1505.06449 شماره
صفحات -
تاریخ انتشار 2015